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Abstract. We discuss the properties of randomly branched polymers and gels close to the 
gelation threshold. We first discuss the synthesis of such polymers, with special emphasis on 
an analogy with percolation. We then discuss the influence of polydispersity on the observed 
power-law behaviours that are observed in the study of their conformation when these 
materials are swollen upon addition of a good solvent. The effective exponents that are 
observed are shown to depend strongly on polydispersity. We also discuss the distribution 
of relaxation times that is present because of this distribution of molecular weights. Exper- 
imental results are given at every stage of this discussion for comparison with theory. 
Although percolation is shown to be an important universality class, we stress that it is by no 
means the only one. 

1. Introduction 

Polymers are a class of materials that have ever-increasing practical importance. They 
have been synthesised and studied by chemists [1] for a long time. Interest arose in the 
physics community in the early 1970s when de Gennes [2-51 showed the equivalence 
between the so-called self-avoiding walk model of a linear polymer in a good solvent 
and the critical phenomena [6] that occur near the transition temperature of the n-vector 
model in magnetism in the limit when n goes to zero. Almost equally important was the 
realisation that it was experimentally possible to observe one polymer among others [7], 
in a solution of any concentration, by small-angle neutron scattering (SANS) combined 
with a labelling technique using deuteration, i.e. replacement of hydrogen atoms along 
the polymer chain by deuterium. This labelling technique avoided the phase separation 
that normally occurs between polymers of different types, except for very high molecular 
weights. From the combination of these two events came an explosion in our under- 
standing of the conformation of amorphous polymers. But linear topologies are not the 
only ones that may exist for polymers. If one considers bifunctional monomers, which 
may react by only two functionalities, after letting them react for some time, one gets 
linear chains. On the other hand, if one uses multifunctional units instead, one generates 
randomly branched structures [ 11 if reaction takes place for rather short times. Asolution 
of these polymers is called a sol. If the reaction time is larger than a threshold, in addition 
to the branched macromolecules of the sol, one gets a solid-like structure, called a gel, 
that has elastic properties, whereas the branched polymers form a viscous solution. The 
gel is sometimes referred to as the ‘insoluble phase’ for the following reason: usually, in 
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order to characterise the product, chemists dissolve it in a good solvent. Two cases may 
occur. If the reaction time is smaller than the threshold, one gets a solution that may be 
diluted at will. If the reaction time is larger than this threshold, on the other hand, one 
gets a gel, which may be swollen to some extent. There is an equilibrium swelling [8] 
that is reached, which corresponds to a balance between the osmotic and elastic forces. 
Trying to swell the gel further leads to a phase separation between the swollen gel and 
a dilute solution containing the sol. An important point that is worth mentioning here 
and that will be studied further below is that in order to get very large branched polymers 
one needs to be in the vicinity of the sol-gel threshold. In what follows, we will be 
interested in the properties of large branched polymers and of a nascent gel, close to the 
sd-gel transition. We note that the latter is a connectivity transition, where nothing 
special happens to the free energy. Such a transition has been considered earlier by Flory 
[l], Stockmayer [9] and others [lo, 111, who gave its mean-field theory, in the case when 
no loops are permitted. Another breakthrough was made in the mid-l970s, when de 
Gennes [12] and Stauffer [13, 141 independently pointed out the similarity between the 
sol-gel transition and percolation [15]. As we shall see, this allowed for the knowledge 
of the distribution of molecular weights in the sol [16]. It stated that it is extremely wide. 
Thus polydispersity should have important effects. The latter were considered and it 
was shown that they lead to effective exponents [17] whenever average properties are 
considered. 

In what follows, we will first recall the various ways of getting branched polymers 
and gels. Among others, we will describe an important case of vulcanisation. This is the 
case when one crosslinks linear polymers in order to get a gel. It was shown by de Gennes 
[2,67] that when this is done in a melt, in the absence of solvent, mean-field theory is 
valid. Section 2 will sum up the various models that have been proposed so far. Then we 
shall consider the swelling properties of branched polymers and gels. The dynamic 
properties will be treated in section 3. Because there is a wide distribution of masses, 
one may think that there is also a large distribution of relaxation times. This is indeed 
the case, and the latter may not be reduced to a single time, but to at least two times 
diverging in a different way as the gel point is approached. 

2. Synthesis 

In this section, we shall review the various ways of obtaining branched polymers and 
gels. We will deal only with truly branched macromolecules, where the number of 
crosslinks is of the order of the total number of monomers. Thus structures like star- or 
comb-shaped polymers, although interesting in different respects, will be considered as 
linear chains and will not be discussed here. The polymers that we have in mind are 
randomly branched structures that are synthesised by a process such as shown in figure 
1, borrowed from Gordon and Ross-Murphy [ll]. Typically, one starts with a vessel 
containing multifunctional units. These are monomers that may react by more than two 
functionalities. Thus, after the chemical reaction has proceeded for some time, one gets 
polymers with increasing sizes. A property that is common to most of the polymers 
synthesised this way is that one gets a wide distribution of the molecular weights: the 
resulting sol is polydisperse. This is the first main difference with linear polymers, where 
polydispersity is much smaller [l, 181. As long as the extent of reactionp is smaller than 
a threshold p c ,  finite, eventually very large, molecules are present. They constitute the 
sol. This is a viscous solution, with diverging viscosity as p approaches pc .  Above the 
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Figure 1. Schematic representation of polyfunctional condensation. (a) At  initial time, only 
three functional monomers are present. ( b )  For later times, branched polymers are present, 
with a wide distribution in size. Eventally, an infinite network appears at the gelation 
threshold. 

threshold, in addition to the sol there is an infinite, non-homogeneous network spanning 
the vessel. This is the gel, which provides an elasticity to the system. Note that whenp 
goes top,  from above, the elastic modulus vanishes continuously. Although this model 
system looks simple at first sight, various ways were used to implement it. We mention 
some of these below. 

2.1. Experimental realisations 

In polycondensation, one basically uses the same monomer, which has a given func- 
tionality. This corresponds to figure 1. Usually, however, a mixture of multifunctional 
and bifunctional monomers is used. Polyurethane [19] is a typical example of this class, 
which will be our main centre of interest. 

In vulcanisation, one starts with linear polymer chains either in a melt or in a solution. 
The chains are permanently crosslinked either by a crosslinking agent or by irradiation. 
We will discuss the case of polystyrene solutions in cyclopentane crosslinked by 
irradiation by y-rays, which was used by the Strasbourg group. 

Physical reversible gelation [20-231 takes place when the crosslinks are either hydro- 
gen bonds or local microcrystallites or helices (quenched isotactic polystyrene, gelatin 
gels). Usually these gels are obtained by decreasing the temperature and are destroyed 
by heating. An important point here is that the temperatures Tf of gel formation and T, 
of destruction are usually different. 

Gelation of electrically charged polymers was recently undertaken by Candau and 
coworkers [24]. The presence of electrical charges considerably changes the properties 
of the resulting polymers and gels. 

In what follows, we will be interested mainly in the first two cases. Physical gels 
share [22] some properties of the first two classes. But their hysteresis is presently not 
completely understood. 

As mentioned in the introduction, percolation was suggested early in its mean-field 
approximation to model this transition. More recently, it was recognised that critical 
rather than classical exponents should be valid in the vicinity of the threshold. Before 
we come to this model, we wish to recall another one that has appeared even more 
recently, namely the aggregation model. This is a generalisation of the well known 
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Table 1. The exponents in cluster-cluster aggregation problem as a function of space dimen- 
sion d (from [ 1321). 

d 2 3 4 5 
D,  1 . 4 2 k  0.03 1.78 kO.05 2.04 kO.08 2.3 kO.2 

Witten-Sander diffusion-limited model [25]. It has been studied by computer simu- 
lations and is assumed to describe the formation of rigid particles in a dilute solution, 
when they have to diffuse towards each other before they can react. 

2.2. Theoretical models 

2.2.1, Aggregation. The cluster-cluster aggregation modelwasstudiedmainly by Meakin 
[26,27] and by Botet, Jullien and Kolb [28,29] using computer simulations. In the 
crudest version, one starts with a lattice with a small fraction of the sites occupied by 
atoms. The latter can diffuse freely, with the constraint that they stick irreversibly to 
each other when they come into contact. The resulting dimer may also diffuse freely, 
with the same constraint. It is important to note that no relaxation is allowed: the shape 
of a molecule is quenched until it meets another one and grows. The size of the resulting 
clusters grows with time. In the limit of vanishing concentrations of initial atoms, one 
gets ultimately a single cluster that exhibits fractal properties: the number N of atoms is 
related to its radius R by the usual relation 

N = (R/l)D (1) 

where lis the size of a monomer and D the fractal dimension of the aggregate. The latter 
was calculated on various lattices for dimensions of space ranging from 2 to 6. The results 
are shown in table 1 in the case when the diffusion coefficient of the clusters is assumed 
to be independent of their size. An important result is that, although there is some 
dispersity in the distribution of sizes for intermediate times, the various clusters appear 
to have roughly the same size. This was shown by Vicsek and Family [30], who assumed 
that the distribution P ( N ,  t )  of clusters made of N monomers at time t has the scaled 
form 

where x and y are two characteristic exponents andf(z) is an unknown function. Because 
the distribution is normalised, we have, for any time t: 

j N P ( N ,  t )  d N  = 1. (3) 

Inserting relation (2) in (3) we get 

t ( 2 - x ) / Y  - 1 

implying x = 2. This implies that there is only one characteristic molecular weight in 
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these systems diverging with time. Calculating the various ratios of successive moments 
of the distribution homogeneous to a mass gives 

I N 2 P ( N ,  t )  dN/ I NP(N,  t )  d N  - 1 N3P(N,  t )  dN/  1 N 2 P ( N ,  t )  d N  - . . . - CY 

(4) 

where - is a proportionality sign, ignoring the constants. 
For non-vanishing initial concentrations CO in atoms on the lattice, gelation occurs 

in a finite time T ,  which may be related to CO in the following way. For times shorter 
than T ,  the same process as above takes place, namely the growth of aggregates. We 
will neglect pcJydispersity and assume that at a given time all the clusters have the same 
radius R .  This may be related to time via relations (1) and (4). We will also assume that 
gelation takes place as soon as the various clusters are in contact. This happens when 
CO - N / R d ,  where d is the dimension of space. Using relations (1) and (4), we get 

( 5 )  CO - TY(I-d/D). 

Because the fractal dimension is smaller than d,  one checks easily that gelation time 
diverges when CO vanishes. 

It seems that no case has yet been found where the aggregation model describes 
polymerisation and gelation when microscopic units such as commonly used in chemistry 
are involved. It is very interesting, however, for aggregation of particles such as the gold 
particle aggregates studied by the Exxon group [31], for instance, or silica [32] or 
polystyrene latex [33] particles and more generally for colloidal aggregation. One has, 
however, to keep it in mind as a model for a rigid polymer that is not dense. This might 
be the equivalent of the rigid-rod limit of linear polymers. For a more serious and very 
detailed discussion of this model and its recent generalisations, the reader is referred to 
the recent reviews by Meakin [27] and Matsushita [34], and to the book by Botet and 
Jullien [29]. In more conventional cases such as described in section 2.1 above, however, 
the distribution of molecular weights is very broad and cannot be reduced to a single 
diverging mass as will be discussed later. This is achieved by the percolation model, 
which we discuss briefly now. 

2.2.2. Percolation. In the opposite limit, when no solvent is present, polycondensation 
of multifunctional units is modelled by percolation. This is a pure geometrical model 
that was introduced by Flory and Stockmayer in its mean-field approximation and 
rediscovered more recently. Its connection with the one-state Potts model, which 
exhibits a phase transition, was shown by Kasteleyn and Fortuin [3.5]. In the bond 
percolation model [14, 151, one considers a lattice where all the sites are present. They 
model the monomers. The bonds are present at random with probabilityp (and absent 
with prubability (1 - p ) ) ,  as shown on figure 2 for d = 2. They model the chemical 
bonds. Whenp is small, one has small clusters modelling small molecules. Asp increases, 
the size of the clusters increases, and the distribution of sizes widens, as long as p is 
smaller than a threshold pc. The resulting mixture of finite, eventually very large, 
polymers is the sol. Above the threshold, in addition to the sol there is an infinite cluster 
present, called the gel, with extremely non-homogeneous structure in the vicinity of p c .  
From a practical point of view, the sol-gel transition that we are modelling by percolation 
may be characterised by a divergence of the viscosity of the sol, below the threshold, 
and by the existence of an elastic modulus above the threshold, as shown on figure 3. 
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t + +  - I ,  
+ + +  

Figure 2. Bond percolation on a square lattice. 
Below the threshold, only a polydisperse sol is 
present. Above p c ,  in addition to the sol, a gel 

t + +  

t t t  t would also be present. 

Figure 3. Schematic behaviour of the viscosity q 
and the elastic modulus E close to the threshold. pc 

We recall briefly the main results of percolation. For further details, the interested 
reader is referred to the review by Essam [15] and to the book by Stauffer [14]. 

As discussed above, we may characterise the transition by the following quantities: 
the viscosity q of the sol diverges below the threshold as 

q - E - S  ( P  < P J  (6) 

E-EU ( P  ' Pc) (7) 

and the modulus E of the gel vanishes as 

where s and ,U are exponents to be discussed in section 4.1 below, and E = Ip - pc /  the 
distance to the threshold. 

The number distribution of clusters, that is the probability P ( N ,  E )  that a polymer of 
the sol is made of N monomers, at a distance E from the threshold is, following Stauffer 
1131, 

P ( N ,  E )  - N - ' f ( E N q  (8) 
with two other exponents z and D. Thus the distribution is a slowly decaying power law, 
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N 

Figure 4. The number distribution of molecular weights decreases as t power law cut off at 
large masses. The cut-off diverges at the threshold. 

which will be discussed further below, cut off by an exponential function f(x) for high 
molecular weights. It is customary to approximate the latter by a step function cutting 
the distribution at a characteristic mass N* - As far as the scaling properties are 
concerned, such an approximation is harmless. 

A final definition concerns the characteristic connectivity length E ,  which diverges 
at the threshold as 

E - (9) 
This may be interpreted as the radius of the largest polymers in the sol, and as the mesh 
size of the gel above pc: the gel is non-homogeneous for distances smaller than E and is 
roughly regular at large distances. Let us stress that these are valid in the reaction bath. 
When solvent is added, the polymers and the gel swell, as will be discussed later. 

The number distribution in relation (9) is shown on figure 4. It is normalised below 
the threshold: every monomer belongs to a polymer. Abovep,, the difference is the gel 
fraction G, which is the probability that a monomer belongs to the gel: 

1 NP(N, E )  d N  = 1 - G. (10) 

G -  E @  (1la) 

/3 = (t - 2)/a. (1lb) 

Using equations (8) and (10) we get 

with 

It is possible to evaluate the next moments of the distribution function, and to define 
mass averages. The important point here is that two different averages are found, 
because, as we will see shortly, the exponent t has values between 2 and 3. By definition 
of the weight- and Z-average masses, N, and N, respectively, we find 

N2P(N, E )  d N  

Nw = NP(N, E )  d N  
- E-’ 

and 
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i N3 P(N, E )  d N 

- i N2P(N, E )  d N  
N -  - &-U0 

with 

y = (3 - t ) / a .  (12b) 

Note that, unlike aggregation, we obtain two characteristic masses, which diverge in 
different ways when the gelation threshold is approached. Note that the Z-average mass 
is proportional to the cut-off mass N*, and is thus characteristic of the largest polymers 
in the sol. 

It is experimentally difficult to  define the threshold p ,  and thus to determine with the 
required precision the distance E .  In order to avoid this difficulty, it is useful to express 
the various quantities that we have just defined in terms of measurable.ones. This brings 
us to define the fractal dimension [36] of the polymers and of the gel in the reaction bath. 
This is done by relating the mass of the clusters to their radius. Combining relations (9) 
and (13), we get 

NZ - E D p  (14) 

with 

D ,  = l / v o .  (1ja> 

The fractal dimension D, may also be calculated in the following simple way. Let us 
estimate the number of monomers that belong to the gel inside a sphere with radius 5. 
The number of sites in the sphere is proportional to its volume, Q - E d .  The number of 
monomers that belong to the gel is GQ. Using relations (9) and ( l la ) ,  and comparing 
with (14), we get 

D ,  = d - /3/v. (1jb) 

Finally, using relations ( l lb ) ,  (12b) and (15b), and the hyperscaling relation 2@ + y = 
vd, we get for the exponent t of the distribution 

z = 1 + d/D,. (1jc) 

The latter relation is very important because it shows that the distribution function itself 
is fractal [37]. In order to understand this, let us consider a ‘class’ of polymers with 
masses between N and N + dN.  Let G(R)  be the corresponding distribution in radii. 
We have 

P(N, E )  d N  = G(R)  d In R (16) 

where a logarithmic scale is taken for distance in order to have dimensionless units. 
Neglecting the exponential tail in the distribution of weights, we have 

G(R) - N-’ dN/d In R. 

Assuming that all polymers in the distribution have the same fractal behaviour (relation 
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Table 2. The exponents in the percolation problem as a function of space dimension d (from 
[46]). Lines 3 , 5  and 7 are the Flory approximations, relations (226) ,  (776) and (76c). 

d 2 3 4 5 6 

1.89 2.52 3.29 3.83 4 
2 512 3 712 4 

DP 
DF 
S 0.98 t 0.01 0.85 t 0.04 0 
(6 - d) /4  1 0.75 0 
7 0.96 2.2 6 
(5d - 6)/4 1 914 6 

(14)), i.e. assuming that for all masses Nin  the distribution the corresponding radius R 
is similarly related to N ,  

N - R ~ P  

we get 

G(R)  - R-d 

Relation (17) shows that the polymers of mass N are in a so-called C* situation, that is 
they are in contact with each other [38]. Because they are fractal, there are large holes 
left. Smaller polymers fill these holes, still being in a C* situation. Thus one may compare 
the distribution to Russian dolls, with smaller polymers inside the larger ones at every 
distance scale, in such a way that the total monomer concentration is unity. 

2.2.3. Flory approximation. The percolation exponents were calculated in different 
ways, by renormalisation, computer simulations [39-46] and conformal invariance in 
two dimensions [47,48]. Let us mention that a special purpose computer [49,50] was 
built at Saclay for calculating the exponents s and ,U for percolation. The results are 
summarised in table 2. As we will use mainly the fractal dimension in what follows, we 
would like to mention a direct way to estimate it in a closed form, namely Flory’s 
approximation. It was given by Isaacson and Lubensky [51,52] for gelation. This will 
also be useful for the discussion of vulcanisation. It is important to give some words of 
caution. The method is known to be approximate [53]. However, because of some 
mysterious cancellation in the dominant terms in the free energy, it usually gives an 
excellent approximation to the fractal dimension for all space dimensions. In the per- 
colation case, however, and in two dimensions, its result is misleading, although it is 
very close to the exact result: it implies that d = 2 is the lower critical dimension. 

The free energy of a polymer is written [51,54] as the sum of elastic and interaction 
terms. The former is assumed to be quadratic in the actual radius R to be determined, 

R2 

RO F,1 = k g T 7  (18a) 

where Ro is the ideal radius when no interaction is present. This was calculated by Zimm 
and Stockmayer [55,56]. For a polymer made of N monomers of length I ,  it is 

Ro - N’I4l. 

The interaction term is due to the potential between monomers, which has the form 
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Figure 5.  The actual interaction potential V(r )  
between monomers. In a good solvent, or for 
high temperature, it is replaced by a point-like 
pseudopotential us (? ) ,  with U the (positive) 
excluded-volume parameter. 

shown in figure 5, with a hard core at short distances preventing the monomers from 
being on top of each other. For high temperatures, i.e. in a good solvent, this is replaced 
by a point-like pseudopotential [3,57], U ~ ( Y ) ,  where u ( T )  is the excluded-volume 
parameter and is assumed here to be positive: 

U = 1 [1 - exp( - V ( r ) / k B  T ) ]  dr. (20) 

In the reaction bath, the interaction term reads 

where the presence of N,,, is related to the Edwards screening [57,58]. As discussed 
above, in the reaction bath large polymers are penetrated by smaller ones. Because of 
this the actual interaction between any two monomers of a macromolecule is the sum of 
the direct interaction and the terms via other monomers belonging to other polymers. 
This is very similar to what occurs in a solution of electrolytes [59]. As a result there is a 
screening of the monomer-monomer interaction. It is assumed in relations (18) that we 
are dealing with large polymers, i.e. that N is of the order of the cut-off mass Nz. 
Thus N and N,  are related to each other. In the Flory theory [51,52], the mean-field 
approximation to such a relation is assumed: 

N, - (21) 
Minimising the free enegy Fe] + F,,, with respect to R ,  and using (21), we get for the 
fractal dimension D, of the polymers in the reaction bath: 

N - R~~ P a )  

D, = (d  + 2)/2. (22b) 

with 

Before we come to the special case of vulcanisation, we will give some experimental 
evidence of the results we discussed above. 
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- 3  - 2  -1  0 1 

logIM/M,,,,)  

Figure 6. The normalised distribution function measured by coupling light scattering and gel 
permeation chromatography (from [62]). 

2.2.4.  Experimental euidence. There is no direct measurement of the fractal dimension 
itself in the reaction bath as yet. Experiments have focused on the distribution itself and 
on its second moment, equation (12a). The distribution function was first shown by 
Leibler and Schosseler [60] to correspond to equation (8). This was achieved by coupling 
gel permeation chromatography and light scattering on a sample made of irradiated 
polystyrene solution in cyclopentane. Figure 6 shows the results of Patton et al, where 
(N*) ' - 'NP(N,  E )  is plotted as a function of N / N *  for several extents of reaction E .  Their 
result is t = 2.3 ? 0.1, consistent with the results in section 2.2.3. Subsequently, this 
was also checked with other systems made either by chemical end-linking of 
polydimethylsiloxane by Lapp et a1 [61], or by bulk condensation polymerisation leading 
to a polyester by Patton et a1 [62], using the same technique. The resulting estimations 
for the exponent t and thus for the fractal dimension D,, if we accept equation ( E ) ,  
are consistent with the percolation prediction for these systems synthesised in different 
ways and therefore show the universality of the percolation results concerning the 
'details' of the crosslinking procedure. 

The weight-average molecular weight N ,  was shown first by Adam eta1 [63] to follow 
relation (12a) by static light scattering measurements on a polyurethane sol. This was 
confirmed by Candau et a1 [go] on polystyrene systems crosslinked with divinylbenzene, 
and by the authors cited above on their respective systems. All these measurements lead 
to a value of the exponent y in excellent agreement with the best results obtained by 
renormalistion-group or computer simulations [65,66] for percolation. One must be 
cautious, however, in that this does not mean that percolation is the only universal class 
for gelating systems, although it seems that it is an important one. 
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2.2.5. Vulcanisation and meanfield. 
(a) The melt. So far we have considered the case when the initial reacting units are 

small polyfunctional monomers. An important special case is when the former are no 
longer small, but large linear polymers. In this section, we will consider first a melt of 
linear chains made of Z monomers. We will assume that they may crosslink at random 
by any of their monomers. This is achieved experimentally either by a crosslinking agent 
or by irradiation with y-rays, for instance. The same phenomena as for small units 
occur, namely one first gets branched macromolecules when the probability p that two 
monomers are crosslinked is small. Above a threshold one also gets a gel. The only 
difference with the previous case lies in the fact that, close to the threshold, the units 
that one has to consider when one is dealing with the connectivity properties are linear 
chains with Zmonomers instead of small molecules. As we will see now, this has dramatic 
consequences, and one goes back to mean-field theory because the critical region 
becomes vanishingly small, as shown by de Gennes [67]. This was also studied by Stauffer 
and Coniglio [68], who considered the range of interactions in the Potts model. Instead of 
considering the fluctuations in connectivity as in [67], we will use the Flory approximation 
[69]. More precisely, we will compare the interaction energy to the thermal energy kBT. 
We estimate the former, assuming that mean-field theory is valid. When it is smaller 
than kBT,  the interaction term may be neglected, and mean-field theory is valid. Other- 
wise, one has to compare it to the elastic energy, as we did in section 2.2.3 above. What 
is important here is that, in the vicinity of the threshold, the units are linear chains with 
Z monomers each. What we are considering is percolation of such units. Thus we may 
rewrite equation (18b) in the following form: 

where RL is the radius of the linear chains. From the literature on the latter [2,5], we 
know that, in a melt, a chain with Z monomers has radius 

RL Z'"1. (23) 
Finally, we know that in the mean-field case, the weight averages are related to the 
distance E to the threshold by the following relations: 

(N,/Z)2 - NZ/Z - E-2 (24a) 
and 

R/RL - & - ' I 2 .  

Inserting equations (23) and (24) in (18c), we get 
Fint - Z(2-d)/2E(6-d)/2 

and, fo rd  = 3 
Fint - Z-1/2~-3/~. 

Thus we find that Fin, is of order unity when E - E* - Z-ll3. When E is smaller than E * ,  

critical exponents are expected. Because we are dealing with large polymer chains, 
however, Z is very large and this region is very small. Therefore, one is practically in the 
other regime, E > E * ,  where we expect mean-field theory to be valid. 

(b) Semi-dilute solution. What is the effect of the initial monomer concentration on 
the above discussion? As we will see now, the width of the critical region increases when 
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concentration decreases [70].  The easiest way to understand this, following the same 
lines as above, is to consider a semi-dilute solution of chains in a good solvent. This is 
an intermediate concentration range, much smaller than unity, where the polymers 
overlap strongly: Cz 4 C 4 1. As in section 2.2.2 above, Cz is the overlap concentration 
of the linear chains. This corresponds to space filling by the chains. Previous studies of 
this concentration range showed that the chains may be considered as random walks if 
one chooses the step length carefully. This is the so-called blob model, which may be 
summarised as follows. In a semi-dilute solution, the chains are locally swollen, for 
distance scales smaller than a screening length, EL, which is a function of concentration 
only 9 

E L  - c-3J4. 

E L  - gYS (26b) 

This swollen portion of a chain is called a blob and is made of g, monomers 

where the exponent in the last relation is the self-avoiding walk exponent and has been 
approximated by its Flory value. 

For larger distance scales, the chain reduces to a random walk if one takes the blob 
as its unit step. Then the radius of a linear polymer made of Z monomers is 

R'L - (Z/g,)E?.  (27) 

This amounts to assuming that the semi-dilute regime of linear chains reduces to a melt 
if one renormalises the unit length. The large-scale properties of a semi-dilute solution 
are very similar to those of a melt. The renormalised step length ensures a smooth cross- 
over to the properties of self-avoiding walks for C - C t  . 

We consider now the vulcanisation of such solutions. In order to evaluate the width 
of the critical region in the Flory approximation, we come back to the interaction free 
energy as above. The only difference with the previous case is that one now has to 
consider random chains made of Z/g, blobs. Thus we have, instead of (18c), 

and thus the same equations as (25a) and (25b) with Z/g, replacing Z .  For the three- 
dimensional case, using relations (26) and (27) ,  this leads to a width E *  of the critical 
region 

Note that, for a melt, C = 1, we recover the previous results. When the initial monomer 
concentration is decreased, relation (28) shows that the width of the critical region 
increases and becomes of the order of unity if the initial concentration is of the order of 
C*. The latter result is easily understood, because for such a concentration, the system 
may be considered as a close-packed ensemble of spheres that may be bonded to a finite 
number of neighbours. The critical behaviour of semi-dilute solutions of polyacrylamide 
crosslinked by chromium was studied by Allain and Salome [71,72].  Finally, let us 
mention that the vulcanised polystyrene of Leibler and Schosseler [60] was synthesised 
around C * ,  so that the critical exponents are observed with this system. 
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3. Swelling 

So far we have considered the synthesis and the conformation of randomly branched 
polymers and gels in the reaction bath. Moreover, we assumed that synthesis was carried 
out in the absence of any solvent. In this section, we will discuss solvent effects. We will 
assume that the systems we are considering are in equilibrium. Then it is equivalent to 
carry out the synthesis at a given monomer concentration or to do it in the absence of 
solvent and then to add solvent in order to bring the system to the required concentration. 
Clearly, such an assumption neglects the possible influence of diffusion of the various 
species, including monomers in the reaction bath during the synthesis. In what follows, 
we will discuss the second case. More precisely, we will assume that the synthesis is 
quenched, and that the distribution of masses is given. Then a good solvent is added. 
One has to separate the cases of the sol and the gel. Whereas the former may be diluted 
at will, the latter only swells up to some extent because of the presence of elastic restoring 
forces. In the following, we will first discuss dilute solutions of polymers. We will first 
neglect polydispersity and consider a single mass. Then polydispersity effects will be 
introduced. Finally, the intermediate semi-dilute concentration range will be discussed. 

3.1. The single polymer 

Let us first consider a single randomly branched polymer in a good solvent. This 
corresponds to the so-called lattice animal problem and is in a different universality class 
[44,73] than percolation. The question is to determine the average configuration of a 
polymer made of N monomers with the constraint that it does not cross itself. Note that 
the statistics of such an animal is different from that of percolation clusters. Whereas all 
possible configurations of the former have equal probability, the latter has a weight that 
depends on both the sites that are occupied and the perimeter, that is on the empty sites 
that are neighbours of an occupied site. Parisi and Sourlas [44] showed an equivalence 
between the animal problem and an Ising system with quenched random magnetic field. 
The latter is equivalent to an Ising system in d - 2 dimensions. In the following, we will 
use the Flory approach, which was given by Isaacson and Lubensky [51] .  As in the 
previous section, the free energy is made up of two terms. The elastic contribution is the 
same as in the reaction bath, relations ( H a )  and (19) above. The interaction term is 
different because the solution is now dilute, and there is no screening of the interactions. 
Thus the total free energy of a polymer is 

F = k B T [ ( R 2 / R i )  + v ( N 2 / R d ) ]  (29) 

with U the excluded-volume parameter (relation (20)), Ro the ideal radius (equation 
(19)) and R the actual radius to be determined. Minimisation with respect to R leads to 
the fractal dimension of the animals: 

with 

D, = 2(d  + 2)/5.  (30b) 

Note that, ford = 3, this gives the exact result, known from the Parisi-Sourlas argument. 
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This implies that the pair correlation function g(r )  between any two monomers is 

g ( r )  - rDa-d.  (31a) 

Its Fourier transform is proportional to the scattered intensity S(q) in a static light or 
neutron scattering experiment. Here q is the momentum transfer 

q = (4n/A) sin 8/2 (32) 
where A is the wavelength of the radiation and 8 the scattering angle. Thus we find the 
usual relation 

S(q) - 4-0". (31b) 

3.2. Dilute solutions: polydispersity 

Actual solutions are very polydisperse, as discussed previously. Because of this poly- 
dispersity, one has to average over the whole distribution P ( N ,  E ) .  As we now discuss, 
this averaging leads to effective exponents that are quite different from the fractal 
dimension of each polymer and involve the exponent t of the distribution. In order to 
show this, we now consider the scattered intensity Z(q) by an actual, polydisperse, 
solution in a light or neutron scattering experiment. Changing notation, let P ( N ,  N,) be 
the number distribution of molecular weights (relation (S)), with N z  the largest masses 
in the system (equation (13)). Because the solution is dilute, the normalisation condition 
is 

2 N P ( N ,  N , )  = c 
0 

( 3 3 )  

with C the monomer concentration. In a light or neutron scattering experiment, the 
scattered intensity by such a solution is 

where the angle brackets are for averaging over configurations and the summation is 
performed on any pair i ,  j of monomers belonging to any molecules (Y, /3 in the solution. 
This may be split into two parts corresponding, respectively, to both monomers on the 
same polymer, and to monomers belonging to different macromolecules: 

I ( q )  = c (exp(iq * r ; ) )  + c (exp(iq * r;fi)) = I , ( q )  + Z*(q). (35) 
1 . J . f f  r.i.a+p 

The intra-polymer part Z,(q) corresponds to the scattering by a polydisperse dis- 
tribution of independent polymers. Choosing a monomer and a polymer at the origin, 
it may be written as 

where the second summation is performed on the monomers in the chosen polymer. In 
the Guinier range, this may be expanded as 

11 ( 4 )  = IC N [ N P ( N ,  N,)(c q2((rOi)2)1)] (37) 

that is 
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where 

is the average radius of gyration of a polymer made of N monomers. Dividing both sides 
of relation (38) by the concentration C and using relation (33), we find 

I , (q) /C = Nw(1 - q2R2,) 
with Nw given in relation (12a) and R2, given by 

R 5  = E N2R(N)2P(N, N z ) / E  N 2 P ( N ,  Nz). 
N N 

Using relations (8), (12) and (41), we find, following Daoud et a1 [17] 

- NW (41b) 

R$5 - N ,  (41c) 

R ga(3 - 7 )  

and for d = 3 in the Flory approximation, 

where we used relations (15c), (22b) and (30b). 

Teixeira [75], relation (40a) may be written in the scaled form 
More generally, for a dilute solution, following Martin and Ackerson [74] and 

where f ( x )  is some unknown scaling function with known asymptotic behaviour. For 
q+ 0, relation (40a) gives the behaviour in the Guinier range. In the intermediate 
range, RZ1 G q 4 1-' , the corresponding behaviour is found by assuming that f ( x )  has 
a power-law behaviour: f ( x )  - xu. The exponent a is determined by the condition that 
in this range the scattered intensity is independent of the mass. Using (8), (12) and (41) 
we find [74] the generalisation of equation (41b): 

I , ( q )  - cq-DA3-r) (qRz %- 1) (414  

I' ( 4 )  - cq -8'5 (4RZ %- 1). (41e) 

and for d = 3 

Let us now turn to the inter-polymer part Z2(q). Let R, and R, be the locations of the 
centres of mass of polymers a and /3 and Rap their distance. Then we have 

z2(q)  = (exp(iq - ry) exp(-iq r f )  exp(iq * R , ~ ) )  (42) 
i,i.a+P 

where rg and rf are the relative positions of monomers i and j from the respective centre 
of mass of the polymers a and /3 to which they belong. In a dilute solution, it is possible 
to decouple the internal correlations from the correlations between centres of mass of 
different polymers. Moreover, we will first consider the limit when q + 0. This will be 
defined more precisely below. Let us consider distances of the order of, or larger than, 
the inter-polymer distances. Because the solution is dilute, these distances are much 
larger than the internal inter-monomer distances in any polymer. Thus the first two 
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terms in the summation of relation (42) are of order unity, and the expression simplifies 
to 

that is 

where g ( q ,  N ,  M )  is the Fourier transform of the pair correlation function between the 
centres of mass of the different polymers. In the limit q --+ 0 that we are considering, this 
is the virial coefficient between polymers N and M .  This was recently considered by 
Witten and Prentis [76],  who showed that for N > M ,  we have 

g(q+ 0, N ,  M )  = -A*(N, M )  = - ( N / M ) R ( I I ~ ) ~ .  

Thus we have 

Z*(q) = - 2 NP(N)MP(M)(N/M)R(M)3. 
N ,  M 

= -N,C(R(M)3/M),  

= - NwC,(R(M)3)" 

with the conventional definitions 

Using relations (35) ,  (40a) and (47a), we get the scattered intensity by a dilute system 
at very small angles [77,78]: 

Relation (51) allows us to introduce the second virial coefficient A2. It also shows that 
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we expect the zero-angle scattered intensity to exhibit amaximum [79] at a concentration 
C* such that 

(C*)-' - A 2  - ( R ( M ) 3 / M ) , .  (52a) 

Note that, from relations (47c) and (51), this corresponds to the physical situation of 
space filling by the polydisperse distribution of polymers: 

C,*(R(M)3) ,  - 1. (53) 

(526) 

Inserting the percolation distribution for P ( N ) ,  and using the Flory exponents, we get 
C* - ~ ~ 3 1 8 .  

It is important to note that this correction in concentration to the scattered intensity by 
dilute solutions corresponds to an (integrated) correlation function between the centres 
of mass of the various polymers in the solution. As a result, whereas the 'fractal' part 
Zl(q) is sensitive to mass fluctuations at scales of order q-*, this correction is related to 
the average distance between the polymers, as shown in equation (47c). In monodisperse 
distributions [54] this is irrelevant because the same scaling is involved in both parts. As 
we shall see, this breaks down when polydispersity is too large, which is the case 
presently. As a conclusion to this section, we may postulate a scaled form for the zero- 
angle intensity in the following form: 

Z(q = 0 )  = CN,f(C/C*).  (54a) 
Using the percolation distribution we get 

z(q = 0) = C N , ~ ( C N ~ , ~ ~ )  

f(x = 0) = 1 

Z(q = 0) - 

where f ( x )  is a scaling function with known limits, 

f (x  s 1) - x-813 

(C * C*). 

leading to 

This result will be discussed with semi-dilute solutions below. It is interesting to note that 
the concentration C* , relation (52b) ,  may be found independently from the calculation of 
the intrinsic viscosity of a polydisperse solution [17]. The intrinsic viscosity [q(N)] 
corresponding to a given mass is 

[ q ( N ) ]  = limc+o(q - q s ) / q , C - R ( N ) 3 / N - N ' 1 2  (55 )  
where q and qs are the viscosities of the solution and of the pure solvent, respectively. 
We assumed d = 3 and we used Flory's relation (30b) for the fractal dimension of a 
single polymer. The average intrinsic viscosity, following Sievers [80] and Marrinan and 
Hermans [81], is ([q]),, with the definition of this average given by equation (48) .  We 
find [ 171 

a relation that gives directly the overlap concentration C* because the cross-over from 
the dilute to the semi-dilute regimes usually corresponds to the breaking down of the 
series expansions of the viscosity valid in the dilute range. Relation (56) was also derived 
recently by Martin et aZ[82] by considering the viscoelastic properties. 
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3.3. Semi-dilute solutions 

The assumption of independent polymers clearly breaks down above the overlap con- 
centration C*. For higher monomer concentrations, in the semi-dilute regime, smaller 
polymers interpenetrate the larger, and Daoud and Leibler [78] suggested a blob model 
todescribe thisconcentration range. Asforthelinearchainsdiscussedinsection2.2.5(b), 
one partitions the distance scales into two ranges, with a cross-over distance f .  The 
polymers of the distribution corresponding to distances smaller than this screening 
length are swollen and thus behave as in a dilute solution. The larger polymers are locally 
swollen and their overall conformation is screened. One is thus led to introduce the size 
g b  of the largest swollen polymers, with radius f .  Thus there is a broad distribution of 
blob sizes. At  C * ,  this distribution includes all the polymers in the distribution. As C 
increases, g b  decreases until it becomes of order unity in the melt. All polymers are then 
assumed to recover the conformation of the percolation clusters in the reaction bath. It 
is straightforward to determine the variations of the screening length 5 and the average 
radius RZ in the intermediate range. This is realised by assuming a homogeneous 
behaviour of the various lengths. We assume that for the whole concentration range we 
have 

RZ = NL’*f(C/C*). (57) 
The functionf(x) has a power-law behaviour in the semi-dilute regime: f ( x )  - xa. The 
exponent a is determined by the condition that the N,., variation is the same as in the 
melt, relations (12a) and (14). Using (52b), we get 

(58) R Z  - NY2C-113. 

The screening length is calculated along the same lines. The condition is that it does not 
depend on the molecular weight. We find 

(59) f - c-513. 
As for linear chains, one may recover the above laws directly by assuming that the large 
macromolecules have percolation cluster conformations if the blob is taken as unit: 

with 

f - g;p*  (bob) 
Assuming power-law dependences on N,., and C for both RZ and 5,  and using continuity 
at C* with the average radius in the dilute regime, relation (41c), one recovers equations 
(58) and (59). 

3.4. Gels 

Let us now consider the swelling of a gel [83,84]. We assume that the initial state is the 
reaction bath, with no solvent present. Then, excess solvent is added and the gel swells. 
The main difference between swelling of the sol and of the gel is that the latter cannot 
be in a dilute regime for obvious connectivity reasons. Thus only the equivalent of the 
semi-dilute range may be observed in swollen gels. The equilibrium concentration, 
corresponding to the maximum swelling, may be estimated in a direct way, assuming 
that it corresponds to a swollen state [ S I .  From the previous sections, we know the 
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fractal dimension of the gel in the initial state: the number N of monomers inside a 
sphere with radius 5 is 

N - g D p .  (61) 

When swelling is completed and equilibrium is reached, the radius 5 has changed to a 
larger value, Ef, corresponding to the same amount of monomers N .  Thus we have 

N - gfD. (62) 

with D, and D,  corresponding respectively to the fractal dimensions of percolation and 
of the single swollen polymer, relations (22) and (30). Using the latter relations together 
with (61) and (62), we get, for three-dimensional systems, 

(63b) gf - g 5 i 4 .  

Swelling is usually described by the so-called swelling ratio Q, which is the ratio of the 
final to initial volumes of the gel: 

Q (6f/EI3 - NY8. (64) 
Note that this relation allows for another estimation of the overlap concentration C*: 
the swelling ratio is also the ratio of the initial to final concentrations. Because the initial 
state is the reaction bath, we find that the final concentration Cf is 

Cf - Ni3l8 - C*. (65) 
Swelling of vulcanised gels [86-881 was also considered and implies two successive steps, 
namely disinterpenetration of the multiple infinite networks present in the mean-field 
case, and swelling of each of these networks [89]. For more details, the reader is referred 
to [88] and [89]. 

3.5. Experimental results 

Light and neutron scattering experiments have been performed by several teams, with 
wide agreement in the results. The first set of experiments were performed by Candau 
eta1 [go], who measured by quasi-elastic light scattering the diffusion coefficient of linear 
polystyrene crosslinked by divinylbenzene as a function of the weight-average molecular 
weight N,. Their result 

(66a) D~ - N-0 .5820 .06  
U' 

is in good agreement with relation (41c) if we accept that the average diffusion coefficient 
varies as the inverse of the average radius in a dilute solution, a relation that was shown 
independently [ 171, 

Leibler and Schosseler [91] measured the average radius of polystyrene crosslinked 
by irradiation by elastic light scattering and found 

(66b) RZ, - ~ k 1 6 2 0 . 0 6  

Adam et a1 [63] found in polyurethane systems an exponent 0.62 i: 0.03, by static 
light scattering measurements, in agreement with the previous results and with equation 
(41c). 
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Figure 7. Scattered intensities in a small-angle neutron scattering experiment (from [92]). 
Curve A corresponds to a fractionated sample and gives the fractal dimension of a polymer. 
Curve B corresponds to the polydisperse sample and gives an effective dimension. 

Finally, Patton et a1 [62] performed both quasi-elastic and elastic light scattering 
experiments on branched polyesters. Their result is slightly larger but consistent with 
the previous ones: 

(66c) - RZ - ~ k 6 6 2 0 . 0 4  

Two sets of small-angle neutron scattering experiments were performed by Bou- 
chaud et a1 [92] on polyurethane samples. The samples were respectively the natural, 
polydisperse, distribution as obtained by synthesis, and a fractionated, monodisperse 
distribution. The results are shown on figure 7 and show the difference between the 
fractal dimension of a polymer and the effective fractal dimension of the polydisperse 
sample, relations (31b) and (41d) respectively. From these curves, one finds 

and 
D ,  = 1.98 2 0.03 (67a) 

(67b) D,(3 - Z) = 1.59 ? 0.05. 
Combination of the latter two results provides the exponent t of the distribution of 
molecular weights: 

Equation (67b) was also checked by Martin et a1 on silica [93], where they found a value 
z = 2.2 t 0.05. (67c) 
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1.57 for the effective exponent, in agreement with (67b). A similar value was also found 
by Cabane eta1 [94] on a different silica system. Note, however, that silica is much more 
complicated than other model systems. For instance, Cabane et a1 [94] observe a peak 
in the scattered intensity in the semi-dilute range, which is not seen in other systems. 
Above the gelation threshold, depending on the pH of the reaction bath, the fractal 
dimension may change with concentration. For more details about this important case, 
the reader is referred to the recent review by Martin and Hurd [93] and to Cabane et a1 

Intrinsic viscosity measurements were performed on polyesters by Patton et a1 [62], 
[941. 

who found 

(68a) [ q ]  - ~ ; 2 8 ? 0  03 

Combining the results on intrinsic viscosity and radius of gyration led Patton et a1 to the 
following results, 

D, = 2.04 t 0.04 (68b) 

(68c) 

and 

t = 2.26 * 0.04 

in very good agreement with the results of Bouchaud et a1 [92], equations (67a) and 
(67c). Equation (68a) is certainly worth discussing further, because it exhibits the 
possible limitations of the Flory approximation. Although equations (67) and (68a) lead 
to a numerical value for t that is in good agreement with the Flory result, t = 11/5, the 
slight difference is sufficient to lead to a significant discrepancy between the measured 
variation of the intrinsic viscosity, relation (68a), and the Flory prediction, [y] - N y 8 ,  
relation (56). Because the overlap concentration C* varies as the inverse of [ q ] ,  this 
might have important consequences concerning the concentration dependences of the 
various observables in the semi-dilute concentration range. These were calculated 
assuming the Flory approximation for the fractal dimension. In this respect, it will be 
extremely interesting to have experimental results concerning the screening length E ,  
relation (59), in this regime. Assuming C* - N i O  as implied by equation (68a), would 
lead to 5 - C2 23, at odds with the Daoud-Leibler [78] prediction E - C?l3, equation 
(59), based on the Flory value. Thus the predictions concerning the semi-dilute con- 
centration range might have to be handled with caution because of this slight difference 
between the Flory prediction and the actual value for the fractal dimension. Thus one 
should bear in mind this implication of the uncertainty on the exponent z. 

The second virial coefficient A 2  was also measured by Delsanti et a1 1771, by looking 
at the maximum of the zero-angle scattered intensity as a function of concentration. 
Their result, A ,  - N:345t006, is in good agreement with the prediction, relations (51) 
and (52b), and with the Patton et a1 [62] results. The same set of experiments also lead, 
for high concentrations, to S,(q+ 0, C) - C-' 3 5 1 0  O4 , again in good agreement with 
relation (54c) above. 

We conclude this section by stressing the general agreement between the exper- 
imental results and those of the percolation and swelling assumptions. Moreover, the 
various systems that were used by the different groups tend to show the universality of 
such behaviour. Thus we can accept the idea that percolation is an important universality 
class for the synthesis of branched polymers and that, upon addition of a good solvent, 
the polymers adopt a swollen conformation. In a Flory approximation, the fractal 
dimension of the swollen polymer is identical to that of a lattice animal. Finally, one 
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notes the important effects of polydispersity, which lead to effective fractal dimensions 
that are different from the dimension of each of the macromolecules. 

Although percolation is an important class, it is not the only one. The recent results 
on silica tend to show that the distribution depends on the catalysis and that different 
classes are present, where polydispersity is not always crucial (see also [33]). 

We turn now to the dynamical properties. 

4. Dynamics 

Because of the wide polydispersity in the molecular-weight distribution, one suspects 
that there should be a wide distribution of relaxation times in these systems. This is 
indeed the case, as we now discuss. We shall restrict the following discussion to the 
reaction bath and to dilute solutions. Intermediate cases, namely semi-dilute solutions 
and partly swollen gels, correspond to mixtures of these two extreme cases. 

4.1. The reaction bath 

Let us stress that we assume here that no solvent is present. Because the distribution of 
times is directly related to the viscoelastic properties, we first discuss the latter. We recall 
the behaviours of the viscosity and the elastic modulus as the threshold is approached: 

y - E-J  

and 

E-~l- l  ( P  > P d  (70) 
Numerous experiments were performed, leading to an extremely wide scatter in the 
results [95-991, and the situation is still rather confused at this time. The predicted values 
for the exponents s and p will be discussed later. Following Efros and Schklovskii 
[98-1021, Durand et a1 [lo31 suggested a scaled form for the frequency dependence 
of the complex modulus E( w )  defined as 

E ( @ )  = E + iwy. (71) 

E(&, w )  - s,uf(iwES+fi). (72) 

At a distance E = p - p c  from the threshold, it was assumed that 

It is possible to consider the high-frequency range of the modulus. One is then probing 
regions of space of limited extent. Thus we do not expect any E dependence of the 
local modulus, which should be a function of frequency only. Assuming a power-law 
behaviour for f ( x ) ,  the exponent in such a power law is determined by the constraint 
that the modulus is a function of frequency only. This leads to 

E(&,  w )  - (iw)-"/("+"). (73) 

(74) 

6 = ( n / 2 ) p / ( s  + (75) 

This implies that the real E' and imaginary E" parts are proportional, 
E' - E" - w-,u/(s+l- l)  

and that the loss angle 6 is a constant proportional to p/(s + p ) ,  

Relations (73) were checked on polyurethane by Durand et a1 [103] and on polyesters 
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by Rubinstein et a1 [104], who both found p / ( s  + p) = 0.69 ? 0.02, and on epoxy by 
MartinetaZ[105], whofound0.70 -+ 0.05. Thusallexperimentalresults agree. However, 
this result was interpreted in different ways by the various authors, with different 
assumptions about the hydrodynamic interactions. 

Durand et aZ[ 1031 and the present authors accepted the percolation set of exponents. 
The elasticity exponent is, following de Gennes [lo61 and Kirkpatrick [107], 

/i= p/v = d - 2 + 4 (76a) 

where t i s  the exponent corresponding to the elastic path [log], and was calculated in a 
Flory approximation by Coniglio and Family [ 1091 and by Roux [ 1101, 

p = d - 2 + D,/2 (76b) 
where D, is the fractal dimension of the polymers in the reaction bath, relations (14) 
and (15). In a Flory approximation, this leads to 

p = (5d - 6)/4 (=  9/4 for d = 3). (76c) 
The viscosity exponent was shown by de Gennes [111] to correspond to the conductivity 
exponent of a mixture of normal conductors and superconductors in the vicinity of the 
percolation threshold. It was conjectured by Kertesz [112] and by Coniglio and Stanley 
[113] that we have 

s= s / v  = 1 - p / 2  (77a) 

S= (6 - d ) / 4  (=3/4for  d = 3). (77b) 

with p = p/v. In a Flory approximation, we find 

Note that within the Flory approximation, we find from (76c) and (77b) that S + p = d ,  
a relation that was conjectured by Straley [114] some time ago. Using these results, we 
find p / ( s  + p) = 3/4, in good agreement with the experimental results. 

Another line of interpretation was followed independently by Martin et a1 [105,115] 
and by Rubinstein et a1 [ 1041, with different assumptions. Whereas hydrodynamic 
interactions are assumed to be present via small polymers [116] in the reaction bath in 
the former approach, the present one assumes that they are screened, so that Rouse 
[117, 1181 type dynamics is valid. The viscosity exponent was calculated by de Gennes 
[ill] and by Stephen [119] in such approximation. Their result is 

s = 2 - p  (77c) 

and, in a Flory approximation, 

S= (6 - d ) / 2  ( = 3/2 for d = 3) 

which is exactly twice the percolation value, equation (77b).  
The elasticity exponent is assumed by both groups to be 

( 7 7 4  

p = d  ( 7 6 4  

a result mentioned some years ago by Coniglio and Daoud [120]. Using relations (76d) 
and (77d) ,  we find p / ( s  + p )  = 2/3, again in good agreement with the experimental 
results discussed above. Thus these viscoelastic measurements, although showing very 
clearly the fractal behaviour of the polymers, are unable to differentiate between the 
two interpretations. So far, direct measurements of the exponentss and p have also been 
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unable to settle this point, because of the wide scatter in the experimental results by the 
various groups [97,104,105,121]. A possible explanation of such scatter is that no such 
universality exists for the dynamic properties as for the static ones, a situation that has 
already occurred in other critical phenomena [ 1221. 

4.2. The distribution of relaxation times 

Leaving aside for the moment this (important) question of the determination of the 
exponents, it is possible to proceed. The complex viscosity, q(w)  = E(w)/io, is directly 
related [123] to the distribution of relaxation times H ( z ) ,  

q(o) = 1 dz.  + iwz 

From equations (72) and (78), it is possible to determine the scaled form of the dis- 
tribution of relaxation times. We find [124] 

H ( z )  = ~ - " / ( ~ + p ' ) G , ( t ~ p + ~ ) .  (79) 

Thus the distribution is a slowly decaying power law cut off for large times by an 
exponential function. It is possible to calculate the normalised moments of this distri- 
bution. As mentioned above, we find that two characteristic times are necessary 

( H ( z ) / z )  d z  - E - ~  - 11 

Note that the moment of order (- 1) appears in (80) only because of notation: what is 
used is generally a logarithmic scale for the time distribution. Note also that Tz is the 
longest characteristic time and appears in the cut-off function of H( t), relation (79), and 
that the other time is an average time, proportional to the viscosity of the sol. That such 
a time be present is not a surprise because of the very definition of the shear viscosity, 
relation (78) with o = 0. Finally, we note that Martin et a1 [82] and Rubinstein et a1 [ 1041 
obtained this result in an independent way by considering the fractal behaviour for local 
scales. 

As a consequence of this distribution of relaxation times, one realises that any 
relaxation property in the intermediate time or frequency range is not exponential but 
follows a power law. In order to understand this, let us consider any relaxation process. 
Any of the modes considered above has an exponential relaxation. As a function of the 
frequency o, we have 

A ( o ,  z) - exp( -ut). (82) 
Thus the total relaxation, being the combination of all modes, is 

A ( U )  = A ( U ,  r ) H (  z) d z - w -s ' (S+p) f (  o T z )  (83) J 
where we made the assumption of independent modes. A detailed study of the visco- 
elastic properties was given very recently by Martin et a1 [82] and by Rubinstein et a1 
[ 1041. 
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4.3.  Dilute solutions 

In the same way as we found a very broad distribution of times in the reaction bath, we 
also expect a distribution in a dilute solution containing the branched polymers of the 
sol. This may be found along the same lines as above, following [115]. In the Flory 
approximation that we discussed above, the intrinsic viscosity of a very dilute solution 
is given by equation (56) as 

[q] - N;!. 
In these dilute solutions, it is plausible to assume that hydrodynamic interactions are 
present, so that Zimm dynamics is valid. This implies that the longest characteristic time 
T(N) of a polymer is 

T(N,) - Rd - N P .  (84) 

[ f j  (U)] - N:’sf(iwNis’s). ( 8 5 )  

Thus we may assume the following scaled form for the frequency-dependent viscosity: 

Using the same transformation as above, we get the distribution of relaxation times 
H d ( t )  in a dilute solution, 

H d ( t )  - ~-~’~h( t /N$’ ’ ) ) .  (86) 

T - N?Is (87) 

TZ - N;?. (88) 

Again this distribution leads to two different characteristic times, defined as above: 

Note that the relation between the distributions of times and masses is not direct, but is 
through the specific viscosities 

H ( t )  d t  = [q(N)]NP(N) d N  (89) 
where we assumed a self-similar behaviour of the viscosities in a dilute solution, 

[q(N)] - R3(N>/N - N1’2 

and may be written in the following way: 

H ( t )  d t  = P(N)R3(N) dN. 

5.  Conclusions 

This review has focused on the similarity between the distribution of molecular weights 
in the sol during the synthesis of branched polymers and in the gel, and the distribution of 
clusters in the percolation problem. Such a similarity has now been widely demonstrated 
experimentally on many systems with various chemistry involved. Although this 
establishes percolation as an important universality class in the problem, it would be 
extremely dangerous to consider it as the only one. We have seen that reversible gelation, 
in particular, exhibits hysteresis, which suggests a first-order rather than a second-order 
transition. 

Within the analogy with percolation, interesting effects occur, which we tried to 
discuss, related to the very wide polydispersity: the distribution of molecular weights 
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decreases as a power law in a diverging range as one approaches the gelation threshold. 
This implies that, in any experiment, where averages are measured, effective exponents 
are obtained. They depend on both the actual exponents for one polymer and the 
exponent that governs the distribution function. 

An important problem that is still open in our opinion is the value of the exponents 
sand ,U of the viscosity and the modulus. As these condition all the rheological properties 
of the reaction bath and concentrated solutions, it is certainly worth having more 
experimental data on model systems. 

Another set of questions is related to the connection with classical rubbers. A 
first step in this direction was recent!y made by Bastide and Leibler [125] within the 
percolation scheme. Another approach was initiated by Edwards [126] and Ball [127] 
some years ago in a very different context, and should certainly be tested in more densely 
crosslinked systems. 

Finally, let us mention the very interesting experiments that have been performed 
in order to observe fractons [128, 1291 on silica gels. The latter are very different from 
those we discussed above. More precisely, they are submitted to a thermal process, 
hypercritical drying, that allows the solvent to be removed and, for some reason unknown 
to the present authors, have a final fractal dimension of the gel D = 2.4 [130]. Thus in 
these aerogels, all the monomers belong to the fractal structure, whereas we discussed 
a situation where the gel fraction is vanishingly small. Because no solvent is present, 
excitations may propagate only along this structure. Rather good support for the exist- 
ence of fractons [131] was given by this set of experiments. 
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